USING SUBSPACE METHODS FOR ESTIMATING ARMA MODELS FOR MULTIVARIATE TIME SERIES WITH CONDITIONALLY HETEROSKEDASTIC INNOVATIONS By
نویسنده
چکیده
This paper deals with the estimation of linear dynamic models of the ARMA type for the conditional mean for time series with conditionally heteroskedastic innovation process widely used in modelling financial time series. Estimation is performed using subspace methods which are known to have computational advantages as compared to prediction error methods based on criterion minimization. These advantages are especially strong for high dimensional time series. The subspace methods are shown to provide consistent estimators. Moreover asymptotic equivalence to prediction error estimators in terms of the asymptotic variance is proved. Also order estimation techniques are proposed and analyzed. The estimators are not efficient as they do not model the conditional variance. Nevertheless, they can be used to obtain consistent estimators of the innovations. In a second step these estimated residuals can be used in order to levitate the problem of specifying the variance model in particular in the multi-output case. This is demonstrated in an ARCH setting, where it is proved that the estimated innovations can be used in place of the true innovations for testing in a linear least squares context in order to specify the structure of the ARCH model without changing the asymptotic distribution. JEL Classification: C13, C32
منابع مشابه
Optimal Instrumental Variables Estimation for ARMA Models
In this paper a new class of Instrumental Variables estimators for linear processes and in particular ARMA models is developed. Previously, IV estimators based on lagged observations as instruments have been used to account for unmodelled MA(q) errors in the estimation of the AR parameters. Here it is shown that these IV methods can be used to improve efficiency of linear time series estimators...
متن کاملMaximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity
We consider maximum likelihood estimation of a particular noninvertible ARMA model with autoregressive conditionally heteroskedastic (ARCH) errors. The model can be seen as an extension to so-called all-pass models in that it allows for autocorrelation and for more flexible forms of conditional heteroskedasticity. These features may be attractive especially in economic and financial application...
متن کاملEvaluation of Univariate, Multivariate and Combined Time Series Model to Prediction and Estimation the Mean Annual Sediment (Case Study: Sistan River)
Erosion, sediment transport and sediment estimate phenomenon with their damage in rivers is a one of the most importance point in river engineering. Correctly modeling and prediction of this parameter with involving the river flow discharge can be most useful in life of hydraulic structures and drainage networks. In fact, using the multivariate models and involving the effective other parameter...
متن کاملInvestigation of the performance and accuracy of multivariate timeseries models in predicting EC and TDS values of the rivers of Urmia Lake Basin
Considering the complexity of hydrological processes, it seems that multivariate methods may enhance the accuracy of time series models and the results obtained from them by taking more influential factors into account. Indeed, the results of multivariate models can improve the results of description, modeling, and prediction of different parameters by involving other influential factors. In th...
متن کاملForecasting large datasets with conditionally heteroskedastic dynamic common factors
We propose a new method for multivariate forecasting which combines Dynamic Factor and multivariate GARCH models. We call the model Dynamic Factor GARCH, as the information contained in large macroeconomic or financial datasets is captured by a few dynamic common factors, which we assume being conditionally heteroskedastic. After describing the estimation of the model, we present simulation res...
متن کامل